Описание предметной области по характеристикам замкнутых САУ

где его вещественная и мнимая части определяются как:

(23)

(24)

а функции и представляют собой модуль и аргумент (фазу) характеристического комплекса

При изменении частоты от 0 до ¥ вектор из комплексной плоскости X-Y опишет своим концом кривую (годограф вектора ), называемую кривой Михайлова (рис. 1.14).

Критерий устойчивости Михайлова формулируется таким образом:

Для устойчивости линейной САУ n-го порядка необходимо и достаточно, чтобы кривая Михайлова при изменении частоты от 0 до бесконечности проходила последовательно n квадрантов в направлении против часовой стрелки, окружая начало координат, причем ее конец должен уходить в бесконечность в том квадранте комплексной плоскости X-Y, номер которого равен степени характеристического уравнения n.

Рис. 1.14.

Критерий устойчивости Найквиста в общем случав формулируется следующим образом: - для устойчивости замкнутой САУ необходимо и достаточно, чтобы разность между числами положительных (сверху вниз) и отрицательных (снизу вверх) переходов AФЧХ разомкнутой системы через ось абсцисс левее точки при изменении частоты и от 0 до µ была равна , где k - число корней характеристического уравнения разомкнутой системы с положительной вещественной частью. При этом начальная точка характеристики на оси абсцисс левее точки считается как половина перехода. Для систем, находящихся в разомкнутом состоянии на границе устойчивости, т.е. имеющих n нулевых корней характеристического уравнения, число k считается равным нулю, а АФЧX берется с дополнением в бесконечности (рис. 1.15, 1.16, 1.17).

Рис. 15.

Рис. 16.

Рис. 1.17.

На основании критерия устойчивости Найквиста могут быть сформулированы требования, которым должны удовлетворять логарифмические частотные характеристики разомкнутой системы для того, чтобы она была устойчива в замкнутом состоянии. Это связано с тем, что в точках пересечения АФЧХ отрезка ЛАЧХ положительна, а ЛФЧХ пересекает прямую (-180°) снизу вверх (положительный перевод) или сверху вниз (отрицательный переход).

Требования к ЛАЧХ и ЛФЧХ в общем случае формулируются следующим образом: для устойчивости замкнутой САР необходимо и достаточно, чтобы разность между числами положительных и отрицательных переходов ЛФЧХ разомкнутой системы через прямую (-180°) при тех значениях частоты , для которых ЛАЧХ разомкнутой системы положительна, была равна , где k - число корней характеристического уравнения разомкнутой системы с положительной вещественной частью. При этом начало ЛФЧХ в бесконечно удаленной точке =0 на прямой (-180°) считается за половину перехода. В случае астатических систем (n¹0) при подсчете точек пересечения ЛФЧХ с прямой (-180°) надо иметь в виду, что если начало ЛФЧХ лежит ниже прямой (-180°) (что соответствует АФЧХ на рис, 16), то в число отрицательных переходов надо включать бесконечно удаленную влево точку =0. (рис 1.18)

Перейти на страницу: 1 2 3 4 5 6

Читайте также

Проектирование цифрового устройства для реализации типовых микроопераций
Разработать функциональную и принципиальную схему операционного устройства исходя из основных параметров по вариантам. Также требуется предоставить блок схемы алгоритмов выполнения опе ...

Проектирование радиоприемного устройства с учетом научно-технического прогресса
Радиоприемное устройство является частью системы передачи сообщений, использующей для этого энергию радиоволн. Оно предназначено для улавливания, преобразования и использования электрома ...

Проект устройства со световыми эффектами на основе микроконтроллера ATtiny12 семейства AVR фирмы Atmel
Популярность микроконтроллеров ATtiny постоянно увеличивается. Не последнюю роль в этом играет соотношение показателей «цена/ быстродействие/ энергопотребление», являющееся одним из ...

Основные разделы

Все права защищены! (с)2025 - www.generallytech.ru