Основы статистической теории радиолокации

Если о сигнале все известно , то нет необходимости в его приеме, если о нем ничего не известно, то его невозможно отличить от помех, и прием его невозможен.

Поэтому, как правило, информацию содержат создаваемые объектом наблюдения и средой, неизвестные в месте приема, изменения параметров сигнала, т.е. в месте приема существует некоторая априорная информация

об исходных значениях информационных параметров.

Прием сигнала должен увеличивать сведения о нем. Сведения после приема называют апостериорными

и используются для принятия решения.

Неизбежные помехи и искажения в радиолиниях приводят к ошибкам в принимаемых решениях. Задача состоит в построении такой радиосистемы, которая бы уменьшала эти ошибки до минимума.

Эта задача может решаться на двух уровнях:

- для каждого заданного вида сигнала ищут приемник, сводящий ошибки к теоретическому минимуму. Такой приемник называется оптимальным

для данного вида сигнала, а даваемый им минимальный уровень искажения, содержащейся в сигнале информации, определяет потенциальную помехоустойчивость

, причем помехоустойчивость любого реального приемника не может ее превысить.

- полагая, что каждый сигнал обрабатывается оптимальным для него приемником, ищут пару сигнал - оптимальный приемник, для которой ошибки минимальны.

Таким образом, если на первом уровне оптимизируется только приемник, то на втором - вся радиосистема.

Для систем извлечения информации характерен системный подход к задаче оптимизации, соответствующей второму из указанных уровней.

Типовая схема прохождения сигнала в одноканальной радиолинии измерения приведена на рисунке 1.

Рисунок 1

- измеряемый параметр (дальность, скорость, угловые координаты и т.д.);

- электрический параметр (частота, фаза, амплитуда и т.д.);

- радиосигнал, зависящий не только от времени и информативного параметра , но и от неинформативных параметров;

- неинформативные параметры;

- внешняя помеха, воздействующая на радиолинию;

- внутренние шумы в приемном устройстве;

Различают три характерных частных случая сигналов:

- сигнал известен точно;

- сигнал со случайной начальной фазой;

- сигнал со случайной начальной фазой и амплитудой;

- результирующее воздействие на входе приемника, в общем случае сложная функция сигнала и обеих помех, в простейшем случае - аддитивная сумма;

- решающий алгоритм обработки этого искаженного помехами сигнала, позволяющий принять то самое решение.

Традиционно используют два этапа обработки :

- этап первичной обработки, обеспечивающий выделение из входного воздействия полезного сигнала, его демодуляцию и измерение параметров;

- этап вторичной обработки, обеспечивающий определение траекторий движения объекта;

В последнее время в связи с развитием сложных комплексов систем извлечения информации, разнесенных в пространстве и (или) времени, из этапа вторичной обработки выделяют как самостоятельный этап, обеспечивающий совместную обработку данных об избранных целях, полученных от разных систем в различное время. Решение должно быть выработано и передано в наиболее удобном для использования виде в индикаторное или регистрирующее устройство, либо ЭВМ или линию связи.

По виду принимаемого решения различают 5 основных задач:

. Различение

n

сигналов и обнаружение

. Возможны сигналов с априорными вероятностями , причем всегда на вход приемника поступает один из сигналов, т.е.:

Необходимо по результирующему входному воздействию за время наблюдения определить с минимальной ошибкой, какой из сигналов принят. При задача различения сигналов вырождается в более простую - задачу обнаружения, сводящуюся к принятию решения о том, есть сигнал или его нет.

2. Оценка параметров сигнала

. Электрический параметр сигнала имеет априорное распределение вероятностей и изменяется столь медленно, что , т.е. за время наблюдения .

Необходимо по за время определить с минимальной ошибкой переданное значение .

Принято различать точечное оценивание, осуществляемое по результатам единичного замера, и следящее, при котором оценка уточняется путем учета результатов предыдущих замеров.

3. Фильтрация параметра сигнала

. Электрический параметр сигнала представляет собой случайный процесс с известными статистическими характеристиками, претерпевающий за период наблюдения существенные изменения. Необходимо по за время определить с минимальной ошибкой, какая из реализаций или самого сигнала передана.

Следящее оценивание параметра может трактоваться как один из вариантов его фильтрации. В частном случае, когда фильтрация вырождается в точечную оценку параметра .

4. Разрешение сигналов

. Возможен прием сигналов с вероятностями , причем несколько сигналов могут поступать на вход приемника одновременно, т.е. . При этом в предельном случае:

Необходимо по за время с минимальной ошибкой разделить все поступившие на вход приемника сигналы , а в ряде случаев и оценить их параметры.

5. Отождествление данных.

Несколько разнесенных в пространстве и (или) во времени радиосистем принимают искаженные помехами сигналы одной и той же цели: . Необходимо за время с минимальной ошибкой объединить полученные от разных систем данные об яркой цели. Кроме того, можно оптимизировать совместное решение двух и более видов задач и, в частности, задач обнаружения и оценки или фильтрации параметров сигнала.

Некоторые соотношения теории вероятностей

Моментные функции

а) Среднее значение:

- постоянная составляющая случайного процесса.

б) Средний квадрат:

Удобнее пользоваться центральной моментной функцией второго порядка, которая дает величину дисперсии случайной функции относительно среднего значения:

- средняя мощность флуктуаций.

Характеристики и не дают достаточно полного представления о характере случайного процесса. Для дополнительной характеристики вводят понятие смешанной моментной функции второго порядка - корреляционной функции.

- двумерная функция распределения случайного процесса .

Наряду с усреднением по совокупности реализаций широко пользуются усреднением по времени.

Стационарный процесс - процесс, для которого функция распределения инвариантна к началу отсчета времени, т.е.:

Т.е. статистические свойства неизменны во времени. Такие процессы называются стационарными в “узком смысле”. Процессы, у которых инвариантны к началу отсчета математическое ожидание и корреляционные функции, называются стационарными в широком смысле.

Эргодический процесс - это стационарный процесс, для которого усреднение по совокупности реализаций дает тот же результат, что и усреднение по времени.

Для эргодических процессов (а стационарные процессы в большинстве являются эргодическими):

- постоянная составляющая;

- мощность случайного процесса;

- автокорреляционная функция;

- коэффициент корреляции.

Связь между корреляционной и спектральной характеристиками:

- энергетический спектр (прямое преобразование Фурье);

- обратное преобразование Фурье;

- дисперсия.

. Независимые случайные величины, для них справедливо:

- совместная плотность вероятностей.

и независимые случайные величины.

. Функционально связанные величины: .

Если известно распределение , то функция распределения - производную нужно брать по абсолютному значению, т.к. функция распределения всегда неотрицательна.

. Условные распределения - т.е. решается задача определения вероятности того, что случайная величина будет находиться в интервале и при этом случайная переменная будет заключена в интервале .

где: - двумерный закон распределения случайных переменных и , - соответствующие одномерные законы.

. Белый шум - это стационарный случайный процесс , функция корреляции которого равна - функции, умноженной на - спектральную плотность.

Этот процесс характеризуется тем, что значения в любые два, сколь угодно близкие моменты времени некоррелированы.

Спектральная плотность: . Спектральная плотность постоянна на всех частотах.

Примеры функций распределения:

- нормальный закон распределения (закон Гаусса);

- закон Релея.

    Читайте также

    Проектирование устройства автоматической компенсации доплеровской частоты для СДЦ РЛС 5Н84А
    Широкое применение радиолокационной техники в военных целях (воздушная и наземная разведки, навигация, вывод на траекторию ракет различного назначения) вызвало в последние годы бурное р ...

    Проект организации широкополосного доступа в коттеджном микрорайоне Чистопрудный г. Ижевска
    Возможность в любое время в любом месте при любых условиях иметь доступ к неограниченным информационным ресурсам становится для современного человека одним из самых важных аспектов жизни ...

    Особенности работы современного средства автоматической радиолокационной прокладки (САРП)
    Устройство компьютерной индикации, совмещенное со средствами автоматической радиолокационной прокладки (САРП) и с электронной картографической системой, размещаемых в ходовой рубке судн ...

    Основные разделы

    Все права защищены! (с)2024 - www.generallytech.ru