По мере приближения размеров твердотельных структур к нанометровой области (1 нм = 0,001 мкм = 10-9 м), а это образования из единиц и десятков атомов, все больше проявляются квантовые свойства электрона. В его поведении преобладающими становятся волновые закономерности, характерные для квантовых частиц. С одной стороны, это приводит к нарушению работоспособности классических транзисторов, использующих закономерности поведения электрона как классической частицы, а с другой - открывает перспективы создания новых уникальных переключающих, запоминающих и усиливающих элементов для информационных систем.
Последние и являются основным объектом исследований и разработок новой области электроники - наноэлектроники, зародившейся в 80-х годах нашего века. Прежде чем перейти к современным достижениям наноэлектроники, кратко рассмотрим квантовые эффекты, лежащие в основе информационного функционирования наноразмерных элементов. Поскольку для кодирования информации мы должны иметь возможность управлять переносом электронов в таком элементе, выделим лишь те квантовые эффекты, которые влияют на этот процесс.
Квантовые основы наноэлектроники:
С позиций квантовой механики электрон может быть представлен волной, описываемой соответствующей волновой функцией. Распространение этой волны в наноразмерных твердотельных структурах контролируется эффектами, связанными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры.
Квантовое ограничение:
Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твердотельную структуру, размер которой L, по крайней мере в одном направлении, ограничен и по своей величине сравним с длиной электронной волны. Классическим аналогом такой структуры является струна с жестко закрепленными концами. Колебания струны могут происходить только в режиме стоячих волн с длиной волны , n = 1, 2, 3, .
Аналогичные закономерности поведения характерны и для свободного электрона, находящегося в твердотельной структуре ограниченного размера или области твердого тела, ограниченной непроницаемыми потенциальными барьерами . На рис. 2 такая ситуация проиллюстрирована на примере квантового шнура, у которого ограничены размеры сечения a и b. В этих направлениях возможно распространение только волн с длиной, кратной геометрическим размерам структуры. Разрешенные значения волнового вектора для одного направления задаются соотношением (n = 1, 2, 3, .), где L в соответствии с рис. 5 может принимать значения, равные a или b. Для соответствующих им электронов это означает, что они могут иметь только определенные фиксированные значения энергии, то есть имеет место дополнительное квантование энергетических уровней. Это явление получило название квантового ограничения. Вдоль же шнура могут двигаться электроны с любой энергией.
Рис. 5. Возможности для движения электронов в квантовоограниченной наноразмерной структуре
Запирание электрона с эффективной массой m*, по крайней мере в одном из направлений, в соответствии с принципом неопределенности приводит к увеличению его импульса на величину . Соответственно увеличивается и кинетическая энергия электрона на величину
Таким образом, квантовое ограничение сопровождается как увеличением минимальной энергии запертого электрона, так и дополнительным квантованием энергетических уровней, соответствующих его возбужденному состоянию. Это приводит к тому, что электронные свойства наноразмерных структур отличаются от известных объемных свойств материала, из которого они сделаны.
Читайте также
Проектирование и расчет электрической сети 110-220 кВ
Проектирование электроэнергетических систем требует комплексного подхода
к выбору и оптимизации схем электрических сетей и технико-экономическому
обоснованию решений, определяющих состав ...
Принцип работы оптоволоконных сканеров отпечатков пальцев
Идентификация по отпечаткам пальцев - на сегодня самая
распространенная биометрическая технология. По данным International Biometric Group, доля систем
распознавания по отпечаткам пальце ...
Проектирование модуля управления трехфазным асинхронным двигателем
В настоящее время создано множество схем
управления двигателями переменного напряжения. При этом делается большой акцент
на применение в этих схемах специальных унифицированных микросхем ...