Рис. 26. Схема моделирования частотных свойств биполярного p-n-p транзистора
Помимо моделирования частотных свойств схемы с общим эмиттером из моделирования этой же схемы можно также получить и частотные свойства схемы с общей базой.
В схеме с общей базой
Параметры моделирования:
.AC LIN 1000 10 20Meg
.STEP I_I1 LIST 10u 20u 50u
.PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*))
.INC " \SCHEMATIC1.net"
Рис. 27. Частотная зависимость коэффициента передачи биполярного p-n-p транзистора при разных токах базы в схеме с общей базой
С ростом частоты растёт шунтирующее действие барьерных ёмкостей p-n перехода и в токе эмиттера возрастает не связанная с усилительными свойствами транзистора ёмкостная составляющая тока эмиттера, поэтому усилительные свойства транзистора ухудшаются. С ростом тока базы усиливается действие поля, создаваемого подвижными носителями заряда, ускоряющее движение неосновных носителей заряда. Вследствие этого время пролёта через базу уменьшается, уменьшается рекомбинация в базе и до коллектора доходит большее число неосновных носителей заряда.
Параметры моделирования:
.AC LIN 1000 10 20Meg
.STEP V_V1 LIST 1 5 20
.PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*))
.INC " \SCHEMATIC1.net"
Рис. 28. Частотная зависимость коэффициента передачи по току биполярного p-n-p транзистора при разных напряжениях коллектора в схеме с общей базой
При увеличении напряжения на коллекторе расширяется коллекторный переход, т.е. уменьшается толщина нейтральной базы, что приводит к увеличению коэффициента передачи.
В схеме с общим эмиттером
Параметры моделирования:
.AC LIN 1000 10 20Meg
.STEP I_I1 LIST 10u 20u 50u
.PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*))
.INC " \SCHEMATIC1.net"
Рис. 29. Частотная зависимость коэффициента передачи тока базы в зависимости от выбора рабочей точки (постоянной составляющей тока базы) в схеме с общим эмиттером
В схеме с общим эмиттером проявляются те же эффекты, что и в схеме с общей базой. Поэтому влияние рабочих токов и коллекторного напряжения подобны ранее приведённым.
Параметры моделирования:
.AC LIN 1000 10 20Meg
.STEP V_V1 LIST 1 5 20
.PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*))
.INC " \SCHEMATIC1.net"
Рис. 30. Частотная зависимость коэффициента передачи при разных напряжениях коллектора в схеме с общим эмиттером
Параметры моделирования:
.AC LIN 1000 10 20Meg
.STEP V_V1 LIST 1 5 20
.PROBE V(alias(*)) I(alias(*)) W(alias(*)) D(alias(*)) NOISE(alias(*))
.INC " \SCHEMATIC1.net"
Рис. 31. Частотная зависимость коэффициентов передачи в схемах с общей базой и общим эмиттером
Читайте также
Поверка электронного вольтметра В7-26 по напряжению постоянного тока
Считается, что первый вольтметр изобрел М. Фарадей, причем в 1830
году, ещё за год до того, как он же открыл явление электромагнитной индукции,
на котором основано действие целого класса ...
Последовательность технологических операций формирования структуры с диэлектрической изоляцией
Прежде чем начать изложение основного материала моей курсовой работы,
стоит ввести определения некоторых понятий, которые в дальнейшем будут широко
использоваться в данной работе.
Инт ...
Передаточная функция разомкнутой системы
1. Определить
передаточную функцию разомкнутой системы рис.1, представить её в канонической
.форме. Построить её логарифмические частотные характеристики.
2. Оценить
показатели к ...