В вычислительной технике существует своеобразная периодизация развития ЭВМ. Их принято делить на поколения. Поколение ЭВМ - это все типы и модели ЭВМ, построенные на одних и тех же научных и технических принципах.
Основные признаки деления ЭВМ на поколения:
. Элементная база.
. Быстродействие.
. Емкость памяти.
. Способы управления и переработки информации и др.
Границы поколений во времени размыты, так как в одно и то же время выпускались машины совершенно разного уровня.
Когда приводят даты, относящиеся к поколениям, то обычно имеют в виду период промышленного производства. В табл. 1 приведено разделение ЭВМ на поколения.
Таблица 1. Поколения ЭВМ
Поколения ЭВМ |
В мире |
В нашей стране |
I поколение |
1946-1955 |
1948-1958 |
II поколение |
1955-1964 |
1959-1967 |
III поколение |
1964-1973 |
1968-1973 |
IV поколение |
1974 - по настоящее время |
1974 - по настоящее время |
Первое поколение ЭВМ - это время становления машин архитектуры фон Неймана, построенных на электронных лампах с быстродействием 10-20 тыс. арифметических операций в секунду.
Первая действующая машина, в которой для выполнения арифметических и логических операций, а также для запоминания и воспроизведения информации использовались электронные схемы, была ЭНИАК. Ее успешная публичная демонстрация датируется февралем 1946 года.
В нашей стране к первому поколению относится первая отечественная вычислительная машина МЭСМ, созданная в 1951 г. в г. Киеве под руководством академика С. А Лебедева, серийные машины «Минск-1», «Стрела», БЭСМ, «Урал-1», «Урал-4» и др.
Несмотря на ограниченность возможностей, ЭВМ первого поколения позволяли выполнять сложнейшие расчеты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.
Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета. Поэтому началась интенсивная разработка средств автоматизации программирования, создание систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность ее использования.
Особенность второго периода - использование транзистора в качестве переключательного элемента (вместо вакуумной лампы) с быстродействием до сотен тысяч операций в секунду. Появились основная память на магнитных сердечниках и внешняя память на магнитных барабанах. В это же время были разработаны алгоритмические языки высокого уровня, такие как Алгол, Кобол, Фортран, которые позволили составлять программы, не учитывая тип машины. В нашей стране к этому поколению относятся машины «Минск-2», «Минск-22», «Минск-32», «БЭСМ-2», «БЭСМ-4», «БЭСМ-6», быстродействие которых составляло миллион операций в секунду.
Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х г. наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
Машины третьего поколения - это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы - микросхемы.
Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.
Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.
Четвертое поколение - это поколение компьютерной техники, разработанное после 1970 г. Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвертого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.
Читайте также
Одномодовые оптические волокна
В одномодовых оптических волокнах (SM ОВ) диаметр сердцевины соизмерим с длиной волны, и за счет
этого в нем существует только одна основная направляемая мода LP01.
Рис. 1. Р ...
Разработка приемника УКВ-радиостанции
Радиоприемное
устройство - одно из важнейших и необходимых элементов радиотехнической системы
передачи сообщений. Оно обеспечивает: улавливание энергии электромагнитного
поля, нес ...
Проект соединительной цифровой радиорелейной линии для сети сотовой связи Томск - Володино
Темпы
увеличения потребности в электросвязи и соответственно темпы реализации этой
потребности в технических системах непрерывно увеличивались на всем протяжении
закончившегося ХХ века ...