Обычно задачи компоновки рассматриваются как процесс принятия решений в определенных или неопределенных условиях, в результате выполнения которого части логической схемы располагаются в конструктивных элементах i-го уровня, а эти элементы размещаются в конструктивных элементах (i+1) - го уровня и т.д., причем расположение выполняется с оптимизацией по выбранному критерию.
Можно выделить два основных класса задач компоновки: алгоритмы компоновки конструктивных узлов и алгоритмы компоновки типовых узлов (ячеек) (рис. 2). Алгоритмы первой группы можно классифицировать по критериям оптимизации, по ограничениям на формирование узлов или по структуре вычислительной процедуры.
Основными критериями оптимизации являются:
1) минимум числа межузловых соединений.
А ограничениями:
) количество элементов в узле;
) число внешних выводов на узле.
С точки зрения вычислительной процедуры алгоритмы компоновки конструктивных узлов можно разделить на:
) последовательные;
2) параллельно последовательные;
3) итерационные.
В алгоритмах первого типа вводится последовательный процесс компоновки узлов, на каждом шаге которого в очередной узел добавляется один из элементов схемы (например, алгоритм компоновки по приведений). В параллельно-последовательных алгоритмах сначала выделяется некоторое исходное количество групп элементов, которые потом распределяются по узлам с учётом ограничений и критериев на компоновку.
Последовательные и параллельно-последовательные алгоритмы применяются для создания базового (начального) варианта компоновки при заданных ограничениях на число элементов в узле число выводов на узле.
Итерационные алгоритмы компоновки служат для улучшения некоторого начального в соответствии с принятыми критериями и используются в сочетании с другими алгоритмами компоновки. Основной задачей алгоритмов компоновки типовых узлов является получение покрытия с минимальной суммарной стоимостью (минимум числа использованных типовых узлов). Структура алгоритмов зависит от особенностей используемого набора типовых узлов.
Читайте также
Проектирование систем автоматизации электрических железных дорог
Последнее десятилетие характеризуется существенным
совершенствованием систем телемеханики и расширением областей их применения.
Это обусловлено новейшими достижениями микроэлектроники и ...
Проектирование двухвходовой КМОП-схемы дешифратора 2 в 4
КМОП
(комплементарная логика на транзисторах металл-оксид-полупроводник; англ. CMOS,
Complementary-symmetry/metal-oxide semiconductor) - технология построения
электронных схем. В те ...
Оптоэлектронные технологии
Оптоэлектроника
- бурно развивающаяся область науки и техники. Многие ее достижения вошли в
быт: индикаторы, дисплеи, лазерные видеопроигрыватели. Разрабатывается
твердоте ...